🎄 🎄

Решение интегралов повышенной сложности

Photo

Привет! Давай разберем эти интегралы.

Задание 9a

Интеграл: $\int \frac{x^2}{5-x^6} dx$

  1. Преобразуем подынтегральное выражение:
    Заметим, что $x^6 = (x^3)^2$. Тогда интеграл можно переписать как:
    $\int \frac{x^2}{5-(x^3)^2} dx$

  2. Замена переменной:
    Пусть $u = x^3$, тогда $du = 3x^2 dx$, и $x^2 dx = \frac{1}{3} du$.
    Интеграл примет вид:
    $\frac{1}{3} \int \frac{1}{5-u^2} du$

  3. Используем формулу для интеграла вида $\int \frac{1}{a^2 - x^2} dx$:
    $\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| + C$
    В нашем случае $a^2 = 5$, значит $a = \sqrt{5}$.

  4. Применяем формулу:
    $\frac{1}{3} \int \frac{1}{5-u^2} du = \frac{1}{3} \cdot \frac{1}{2\sqrt{5}} \ln \left| \frac{\sqrt{5}+u}{\sqrt{5}-u} \right| + C$

  5. Возвращаемся к исходной переменной:
    Заменяем $u$ на $x^3$:
    $\frac{1}{6\sqrt{5}} \ln \left| \frac{\sqrt{5}+x^3}{\sqrt{5}-x^3} \right| + C$

Ответ:
$\int \frac{x^2}{5-x^6} dx = \frac{1}{6\sqrt{5}} \ln \left| \frac{\sqrt{5}+x^3}{\sqrt{5}-x^3} \right| + C$

Задание 9б

Интеграл: $\int \frac{dx}{\sqrt{x(3x+5)}}$

  1. Преобразуем подынтегральное выражение:
    $\int \frac{dx}{\sqrt{3x^2+5x}}$

  2. Выделяем полный квадрат под корнем:
    $3x^2 + 5x = 3\left(x^2 + \frac{5}{3}x\right) = 3\left(x^2 + \frac{5}{3}x + \left(\frac{5}{6}\right)^2 - \left(\frac{5}{6}\right)^2\right) = 3\left(\left(x + \frac{5}{6}\right)^2 - \frac{25}{36}\right)$

  3. Перепишем интеграл:
    $\int \frac{dx}{\sqrt{3\left(\left(x + \frac{5}{6}\right)^2 - \frac{25}{36}\right)}} = \frac{1}{\sqrt{3}} \int \frac{dx}{\sqrt{\left(x + \frac{5}{6}\right)^2 - \left(\frac{5}{6}\right)^2}}$

  4. Замена переменной:
    Пусть $u = x + \frac{5}{6}$, тогда $du = dx$.
    Интеграл примет вид:
    $\frac{1}{\sqrt{3}} \int \frac{du}{\sqrt{u^2 - \left(\frac{5}{6}\right)^2}}$

  5. Используем формулу для интеграла вида $\int \frac{1}{\sqrt{x^2 - a^2}} dx$:
    $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln |x + \sqrt{x^2 - a^2}| + C$
    В нашем случае $a = \frac{5}{6}$.

  6. Применяем формулу:
    $\frac{1}{\sqrt{3}} \int \frac{du}{\sqrt{u^2 - \left(\frac{5}{6}\right)^2}} = \frac{1}{\sqrt{3}} \ln \left|u + \sqrt{u^2 - \left(\frac{5}{6}\right)^2}\right| + C$

  7. Возвращаемся к исходной переменной:
    Заменяем $u$ на $x + \frac{5}{6}$:
    $\frac{1}{\sqrt{3}} \ln \left|x + \frac{5}{6} + \sqrt{\left(x + \frac{5}{6}\right)^2 - \frac{25}{36}}\right| + C$

  8. Упростим выражение под корнем:
    $\left(x + \frac{5}{6}\right)^2 - \frac{25}{36} = x^2 + \frac{5}{3}x + \frac{25}{36} - \frac{25}{36} = x^2 + \frac{5}{3}x$

  9. Окончательный вид интеграла:
    $\frac{1}{\sqrt{3}} \ln \left|x + \frac{5}{6} + \sqrt{x^2 + \frac{5}{3}x}\right| + C = \frac{1}{\sqrt{3}} \ln \left|x + \frac{5}{6} + \sqrt{\frac{3x^2 + 5x}{3}}\right| + C$

Ответ:
$\int \frac{dx}{\sqrt{x(3x+5)}} = \frac{1}{\sqrt{3}} \ln \left|x + \frac{5}{6} + \sqrt{\frac{3x^2 + 5x}{3}}\right| + C$

Задание 9в

Интеграл: $\int x \operatorname{arctg} \sqrt{x^2-1} dx$

  1. Замена переменной:
    Пусть $u = \sqrt{x^2 - 1}$, тогда $u^2 = x^2 - 1$, и $x^2 = u^2 + 1$.
    Дифференцируем $u^2 = x^2 - 1$: $2u \, du = 2x \, dx$, следовательно, $x \, dx = u \, du$.

  2. Перепишем интеграл:
    $\int \operatorname{arctg} (u) \cdot u \, du$

  3. Интегрирование по частям:
    Пусть $v = \operatorname{arctg} (u)$, тогда $dv = \frac{1}{1+u^2} du$.
    Пусть $dw = u \, du$, тогда $w = \frac{1}{2}u^2$.
    Используем формулу интегрирования по частям: $\int v \, dw = v \cdot w - \int w \, dv$
    $\int \operatorname{arctg} (u) \cdot u \, du = \frac{1}{2}u^2 \operatorname{arctg} (u) - \frac{1}{2} \int \frac{u^2}{1+u^2} du$

  4. Преобразуем интеграл $\int \frac{u^2}{1+u^2} du$:
    $\int \frac{u^2}{1+u^2} du = \int \frac{u^2 + 1 - 1}{1+u^2} du = \int \left(1 - \frac{1}{1+u^2}\right) du = u - \operatorname{arctg} (u) + C_1$

  5. Подставим результат обратно:
    $\frac{1}{2}u^2 \operatorname{arctg} (u) - \frac{1}{2} \int \frac{u^2}{1+u^2} du = \frac{1}{2}u^2 \operatorname{arctg} (u) - \frac{1}{2} (u - \operatorname{arctg} (u)) + C$

  6. Возвращаемся к исходной переменной:
    Заменяем $u$ на $\sqrt{x^2 - 1}$:
    $\frac{1}{2}(x^2 - 1) \operatorname{arctg} (\sqrt{x^2 - 1}) - \frac{1}{2} (\sqrt{x^2 - 1} - \operatorname{arctg} (\sqrt{x^2 - 1})) + C$

  7. Упростим выражение:
    $\frac{1}{2}(x^2 - 1) \operatorname{arctg} (\sqrt{x^2 - 1}) - \frac{1}{2}\sqrt{x^2 - 1} + \frac{1}{2}\operatorname{arctg} (\sqrt{x^2 - 1}) + C = \frac{1}{2}x^2 \operatorname{arctg} (\sqrt{x^2 - 1}) - \frac{1}{2}\sqrt{x^2 - 1} + C$

Ответ:
$\int x \operatorname{arctg} \sqrt{x^2-1} dx = \frac{1}{2}x^2 \operatorname{arctg} (\sqrt{x^2 - 1}) - \frac{1}{2}\sqrt{x^2 - 1} + C$

Варианты продолжения:
1 Продолжить решение
Продолжи решать все оставшиеся задания с фото, которые еще не были решены, дай подробные объяснения

Ассистент: Отлично, продолжаем!

Задание 10a

Интеграл: $\int \frac{dx}{(1+x^2)\operatorname{arctg}^2 x}$

  1. Замена переменной:
    Пусть $u = \operatorname{arctg} x$, тогда $du = \frac{1}{1+x^2} dx$.

  2. Перепишем интеграл:
    $\int \frac{du}{u^2}$

  3. Вычислим интеграл:
    $\int u^{-2} du = -u^{-1} + C = -\frac{1}{u} + C$

  4. Возвращаемся к исходной переменной:
    Заменяем $u$ на $\operatorname{arctg} x$:
    $-\frac{1}{\operatorname{arctg} x} + C$

Ответ:
$\int \frac{dx}{(1+x^2)\operatorname{arctg}^2 x} = -\frac{1}{\operatorname{arctg} x} + C$

Задание 10б

Интеграл: $\int \frac{dx}{\sqrt{5x^2-x-1}}$

  1. Преобразуем подкоренное выражение:
    $5x^2 - x - 1 = 5\left(x^2 - \frac{1}{5}x\right) - 1 = 5\left(x^2 - \frac{1}{5}x + \left(\frac{1}{10}\right)^2 - \left(\frac{1}{10}\right)^2\right) - 1 = 5\left(\left(x - \frac{1}{10}\right)^2 - \frac{1}{100}\right) - 1 = 5\left(x - \frac{1}{10}\right)^2 - \frac{1}{20} - 1 = 5\left(x - \frac{1}{10}\right)^2 - \frac{21}{20}$

  2. Перепишем интеграл:
    $\int \frac{dx}{\sqrt{5\left(x - \frac{1}{10}\right)^2 - \frac{21}{20}}} = \frac{1}{\sqrt{5}} \int \frac{dx}{\sqrt{\left(x - \frac{1}{10}\right)^2 - \frac{21}{100}}}$

  3. Замена переменной:
    Пусть $u = x - \frac{1}{10}$, тогда $du = dx$.
    Интеграл примет вид:
    $\frac{1}{\sqrt{5}} \int \frac{du}{\sqrt{u^2 - \frac{21}{100}}}$

  4. Используем формулу для интеграла вида $\int \frac{1}{\sqrt{x^2 - a^2}} dx$:
    $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln |x + \sqrt{x^2 - a^2}| + C$
    В нашем случае $a^2 = \frac{21}{100}$, значит $a = \frac{\sqrt{21}}{10}$.

  5. Применяем формулу:
    $\frac{1}{\sqrt{5}} \int \frac{du}{\sqrt{u^2 - \frac{21}{100}}} = \frac{1}{\sqrt{5}} \ln \left|u + \sqrt{u^2 - \frac{21}{100}}\right| + C$

  6. Возвращаемся к исходной переменной:
    Заменяем $u$ на $x - \frac{1}{10}$:
    $\frac{1}{\sqrt{5}} \ln \left|x - \frac{1}{10} + \sqrt{\left(x - \frac{1}{10}\right)^2 - \frac{21}{100}}\right| + C$

  7. Упростим выражение под корнем:
    $\left(x - \frac{1}{10}\right)^2 - \frac{21}{100} = x^2 - \frac{1}{5}x + \frac{1}{100} - \frac{21}{100} = x^2 - \frac{1}{5}x - \frac{20}{100} = x^2 - \frac{1}{5}x - \frac{1}{5}$
    Тогда $5x^2 - x - 1 = 5\left(x^2 - \frac{1}{5}x - \frac{1}{5}\right)$

  8. Окончательный вид интеграла:
    $\frac{1}{\sqrt{5}} \ln \left|x - \frac{1}{10} + \sqrt{x^2 - \frac{1}{5}x - \frac{1}{5}}\right| + C = \frac{1}{\sqrt{5}} \ln \left|x - \frac{1}{10} + \sqrt{\frac{5x^2 - x - 1}{5}}\right| + C$

Ответ:
$\int \frac{dx}{\sqrt{5x^2-x-1}} = \frac{1}{\sqrt{5}} \ln \left|x - \frac{1}{10} + \sqrt{\frac{5x^2 - x - 1}{5}}\right| + C$

Задание 10в

Интеграл: $\int x^2 \cos \frac{x}{2} dx$

  1. Интегрирование по частям (дважды):
    Пусть $u = x^2$, тогда $du = 2x \, dx$.
    Пусть $dv = \cos \frac{x}{2} dx$, тогда $v = 2\sin \frac{x}{2}$.
    Используем формулу интегрирования по частям: $\int u \, dv = u \cdot v - \int v \, du$
    $\int x^2 \cos \frac{x}{2} dx = 2x^2 \sin \frac{x}{2} - \int 2\sin \frac{x}{2} \cdot 2x \, dx = 2x^2 \sin \frac{x}{2} - 4 \int x \sin \frac{x}{2} dx$

  2. Интегрирование по частям еще раз:
    Пусть $u = x$, тогда $du = dx$.
    Пусть $dv = \sin \frac{x}{2} dx$, тогда $v = -2\cos \frac{x}{2}$.
    $\int x \sin \frac{x}{2} dx = -2x \cos \frac{x}{2} - \int -2\cos \frac{x}{2} dx = -2x \cos \frac{x}{2} + 2 \int \cos \frac{x}{2} dx = -2x \cos \frac{x}{2} + 4\sin \frac{x}{2} + C_1$

  3. Подставим результат обратно:
    $2x^2 \sin \frac{x}{2} - 4 \int x \sin \frac{x}{2} dx = 2x^2 \sin \frac{x}{2} - 4(-2x \cos \frac{x}{2} + 4\sin \frac{x}{2}) + C = 2x^2 \sin \frac{x}{2} + 8x \cos \frac{x}{2} - 16\sin \frac{x}{2} + C$

Ответ:
$\int x^2 \cos \frac{x}{2} dx = 2x^2 \sin \frac{x}{2} + 8x \cos \frac{x}{2} - 16\sin \frac{x}{2} + C$

Варианты продолжения:
1 Продолжить решение
Продолжи решать все оставшиеся задания с фото, которые еще не были решены, дай подробные объяснения

Ассистент: Продолжаем решать интегралы!

Задание 11a

Интеграл: $\int \frac{x}{\sqrt{12-x^2}} dx$

  1. Замена переменной:
    Пусть $u = 12 - x^2$, тогда $du = -2x \, dx$, и $x \, dx = -\frac{1}{2} du$.

  2. Перепишем интеграл:
    $\int \frac{-\frac{1}{2} du}{\sqrt{u}} = -\frac{1}{2} \int u^{-1/2} du$

  3. Вычислим интеграл:
    $-\frac{1}{2} \int u^{-1/2} du = -\frac{1}{2} \cdot \frac{u^{1/2}}{1/2} + C = -u^{1/2} + C = -\sqrt{u} + C$

  4. Возвращаемся к исходной переменной:
    Заменяем $u$ на $12 - x^2$:
    $-\sqrt{12 - x^2} + C$

Ответ:
$\int \frac{x}{\sqrt{12-x^2}} dx = -\sqrt{12 - x^2} + C$

Задание 11б

Интеграл: $\int \frac{3x^2 - 2}{x^3 - 2x + 1} dx$

  1. Заметим, что производная знаменателя похожа на числитель:
    Производная $x^3 - 2x + 1$ равна $3x^2 - 2$.

  2. Замена переменной:
    Пусть $u = x^3 - 2x + 1$, тогда $du = (3x^2 - 2) dx$.

  3. Перепишем интеграл:
    $\int \frac{du}{u}$

  4. Вычислим интеграл:
    $\int \frac{du}{u} = \ln |u| + C$

  5. Возвращаемся к исходной переменной:
    Заменяем $u$ на $x^3 - 2x + 1$:
    $\ln |x^3 - 2x + 1| + C$

Ответ:
$\int \frac{3x^2 - 2}{x^3 - 2x + 1} dx = \ln |x^3 - 2x + 1| + C$

Задание 11в

Интеграл: $\int \sqrt[3]{x} \ln x \, dx$

  1. Преобразуем подынтегральное выражение:
    $\int x^{1/3} \ln x \, dx$

  2. Интегрирование по частям:
    Пусть $u = \ln x$, тогда $du = \frac{1}{x} dx$.
    Пусть $dv = x^{1/3} dx$, тогда $v = \frac{3}{4}x^{4/3}$.
    Используем формулу интегрирования по частям: $\int u \, dv = u \cdot v - \int v \, du$
    $\int x^{1/3} \ln x \, dx = \frac{3}{4}x^{4/3} \ln x - \int \frac{3}{4}x^{4/3} \cdot \frac{1}{x} dx = \frac{3}{4}x^{4/3} \ln x - \frac{3}{4} \int x^{1/3} dx$

  3. Вычислим интеграл $\int x^{1/3} dx$:
    $\int x^{1/3} dx = \frac{3}{4}x^{4/3} + C_1$

  4. Подставим результат обратно:
    $\frac{3}{4}x^{4/3} \ln x - \frac{3}{4} \int x^{1/3} dx = \frac{3}{4}x^{4/3} \ln x - \frac{3}{4} \cdot \frac{3}{4}x^{4/3} + C = \frac{3}{4}x^{4/3} \ln x - \frac{9}{16}x^{4/3} + C$

Ответ:
$\int \sqrt[3]{x} \ln x \, dx = \frac{3}{4}x^{4/3} \ln x - \frac{9}{16}x^{4/3} + C$

Варианты продолжения:
1 Продолжить решение
Продолжи решать все оставшиеся задания с фото, которые еще не были решены, дай подробные объяснения

Ассистент: Продолжаем решать!

Задание 12a

Интеграл: $\int \sqrt{(5-x^2)^5} x \, dx$

  1. Преобразуем подынтегральное выражение:
    $\int (5-x^2)^{5/2} x \, dx$

  2. Замена переменной:
    Пусть $u = 5 - x^2$, тогда $du = -2x \, dx$, и $x \, dx = -\frac{1}{2} du$.

  3. Перепишем интеграл:
    $\int u^{5/2} \left(-\frac{1}{2}\right) du = -\frac{1}{2} \int u^{5/2} du$

  4. Вычислим интеграл:
    $-\frac{1}{2} \int u^{5/2} du = -\frac{1}{2} \cdot \frac{u^{7/2}}{7/2} + C = -\frac{1}{2} \cdot \frac{2}{7} u^{7/2} + C = -\frac{1}{7} u^{7/2} + C$

  5. Возвращаемся к исходной переменной:
    Заменяем $u$ на $5 - x^2$:
    $-\frac{1}{7} (5 - x^2)^{7/2} + C$

Ответ:
$\int \sqrt{(5-x^2)^5} x \, dx = -\frac{1}{7} (5 - x^2)^{7/2} + C$

Задание 12б

Интеграл: $\int \frac{10x - 9}{5x^2 - 9x + 11} dx$

  1. Заметим, что производная знаменателя похожа на числитель:
    Производная $5x^2 - 9x + 11$ равна $10x - 9$.

  2. Замена переменной:
    Пусть $u = 5x^2 - 9x + 11$, тогда $du = (10x - 9) dx$.

  3. Перепишем интеграл:
    $\int \frac{du}{u}$

  4. Вычислим интеграл:
    $\int \frac{du}{u} = \ln |u| + C$

  5. Возвращаемся к исходной переменной:
    Заменяем $u$ на $5x^2 - 9x + 11$:
    $\ln |5x^2 - 9x + 11| + C$

Ответ:
$\int \frac{10x - 9}{5x^2 - 9x + 11} dx = \ln |5x^2 - 9x + 11| + C$

Задание 12в

Интеграл: $\int \operatorname{arctg} x \, dx$

  1. Интегрирование по частям:
    Пусть $u = \operatorname{arctg} x$, тогда $du = \frac{1}{1+x^2} dx$.
    Пусть $dv = dx$, тогда $v = x$.
    Используем формулу интегрирования по частям: $\int u \, dv = u \cdot v - \int v \, du$
    $\int \operatorname{arctg} x \, dx = x \operatorname{arctg} x - \int \frac{x}{1+x^2} dx$

  2. Вычислим интеграл $\int \frac{x}{1+x^2} dx$:
    Пусть $w = 1 + x^2$, тогда $dw = 2x \, dx$, и $x \, dx = \frac{1}{2} dw$.
    $\int \frac{x}{1+x^2} dx = \int \frac{1}{w} \cdot \frac{1}{2} dw = \frac{1}{2} \int \frac{dw}{w} = \frac{1}{2} \ln |w| + C_1 = \frac{1}{2} \ln (1+x^2) + C_1$

  3. Подставим результат обратно:
    $x \operatorname{arctg} x - \int \frac{x}{1+x^2} dx = x \operatorname{arctg} x - \frac{1}{2} \ln (1+x^2) + C$

Ответ:
$\int \operatorname{arctg} x \, dx = x \operatorname{arctg} x - \frac{1}{2} \ln (1+x^2) + C$

Продолжи решать все оставшиеся задания с фото, которые еще не были решены, дай подробные объяснения

Ассистент: Ассистент: Продолжаем решать!

К сожалению, на изображении больше нет заданий. Если у вас есть еще задания, пожалуйста, предоставьте их.

Продолжи решать все оставшиеся задания с фото, которые еще не были решены, дай подробные объяснения

Ассистент: Кажется, мы решили все задания с предоставленного изображения. Если у вас есть другие задания или вопросы, пожалуйста, предоставьте их!

thinking img
progress gif

Текст скопирован
Готово
Ошибка
×